A course on Basic Immunology, with emphasis on relevance to immunologic diseases and therapeutic strategies

> Abul K. Abbas, MD University of California San Francisco

> Developed as an education program of the Federation of Clinical Immunology Societies (FOCIS)

Themes of the course

2

- Introduction to the nomenclature of immunology
- Basic principles: mechanisms underlying immune responses
- Pathogenesis of selected diseases
- Emerging concepts, and their potential clinical and therapeutic implications

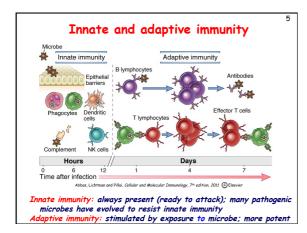
Why the great interest in Immunology?

- Basic science: understanding a complex biological system
- Clinical medicine: cause of many diseases, impact on many more diseases
- New therapies based on biology
- Potential for major role in emerging therapies (gene therapy, stem cell therapy)

What does the immune system do?

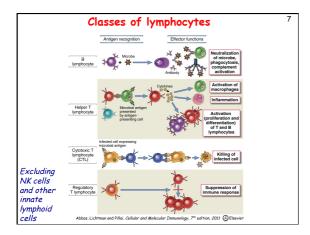
Normal functions

- Defense against infections
- \cdot Defense against some tumors

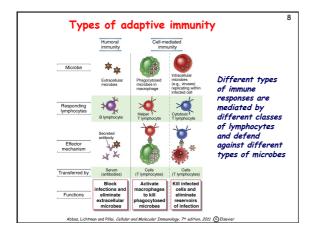

Disease and therapeutic implications

- \cdot Cause of disease (autoimmunity, allergy)
- \cdot Barrier to transplantation, gene therapy

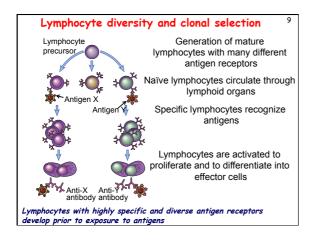
Take home messages

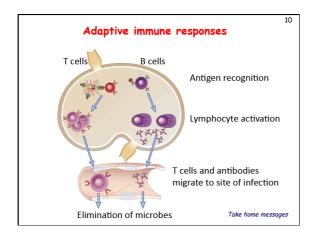

6

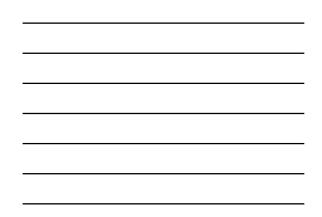
4

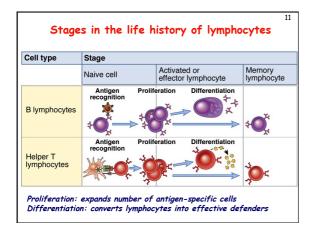


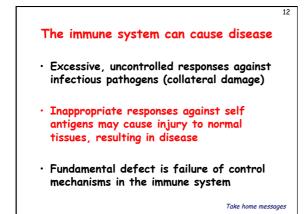



- Lymphocytes: the cells of adaptive immunity; recognize antigens and develop (differentiate) into cells that perform the defense functions
- Antigen-presenting cells: cells that capture antigens and display them to lymphocytes
- Effector cells: leukocytes (white blood cells) that eliminate microbes (the "effect" of the immune response); may be lymphocytes, but are often other leukocytes









The significance of recent advances

13

14

15

- Provides a solid foundation of basic principles
- Improved understanding of disease mechanisms
- Development of novel therapies
- Appreciation of the role of the immune system in non-immune diseases

Challenges 1. More information initially leads to increased apparent complexity

- Many newly identified cell populations - Innate lymphoid cells
 - Innate tymphola cens
 - Subsets of dendritic cellsSubsets of helper T lymphocytes
 - Unique roles and functions?
- Complex signaling pathways and gene expression patterns
 - High-throughput "omics" approaches are generating enormous volumes of data

Challenges

- 2. In vivo veritas, in vitro maybe?
- Much of our knowledge is based on cell culture and other in vitro models
 Difficult to convert to in vivo biology
- Emphasis in the last decade has shifted from immune activation to regulation
 Regulation involves multiple cell populations and pathways and has to be studied in vivo

Challenges 3. Mouse to human translation

16

- Animal models are critical for discovery but may not reflect the human situation
 Complex genetics of humans, environmental influences
- Animal models of disease have not proved to be as predictive of the human disease or therapeutic responses as hoped
 Nevertheless, MANY successes!