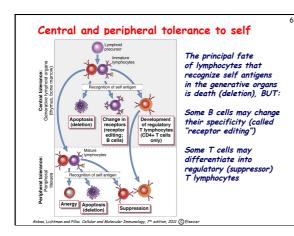
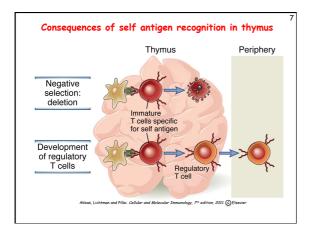


Lecture outline

- Principles of immune regulation
- Self-tolerance; mechanisms of central and peripheral tolerance
- \cdot Inhibitory receptors of T cells

The importance of immune regulation

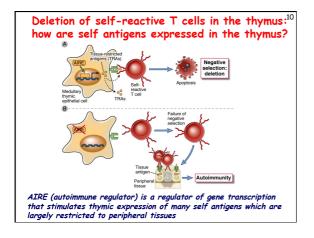

- To avoid excessive lymphocyte activation and tissue damage during normal protective responses against infections
- To prevent inappropriate reactions against self antigens ("self-tolerance")
- Failure of control mechanisms is the underlying cause of immune-mediated inflammatory diseases


Take home messages

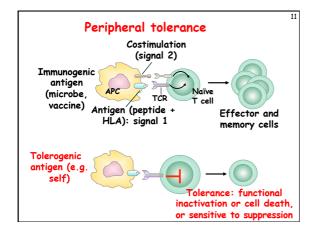
Immunological tolerance

• Definition:

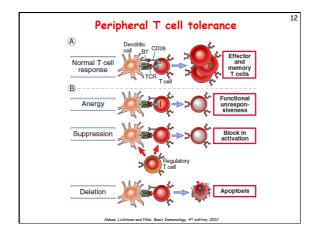
- unresponsiveness to an antigen induced by exposure of lymphocytes to that antigen; antigen-specific (unlike "immunosuppression")
- Significance:
 - All individuals are tolerant of their own antigens (self-tolerance); breakdown of self-tolerance results in autoimmunity
 - Therapeutic potential: Inducing tolerance may be exploited to prevent graft rejection, treat autoimmune and allergic diseases, and prevent immune responses in gene therapy and stem cell transplantation

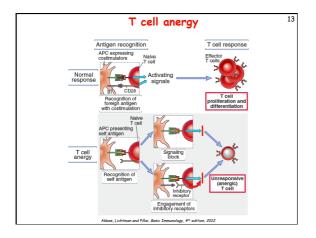


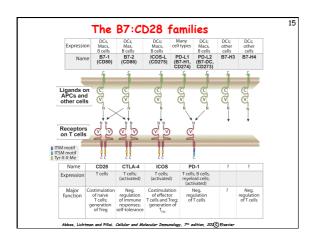
What self antigens are seen in the thymus?

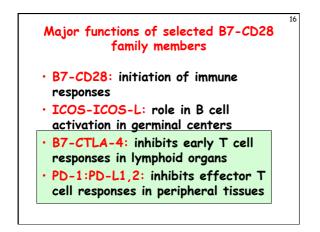

- Ubiquitous cell-associated and circulating proteins
- The thymus has a special mechanism for displaying peripheral tissue antigens in thymic medullary epithelial cells, where they signal self-reactive thymocytes for death

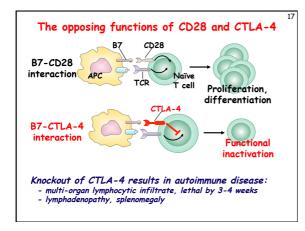
Consequences of AIRE mutation


- Human disease: autoimmune polyendocrinopathy with candidiasis and ectodermal dysplasia (APECED), also called autoimmune polyendocrine syndrome (APS-1)
 Associated care identified by positional classical
 - Associated gene identified by positional cloning, named AIRE ("autoimmune regulator")
- Mouse knockout: autoantibodies against multiple endocrine organs, retina
 - Failure to express many self antigens in the thymus --> failure of negative selection

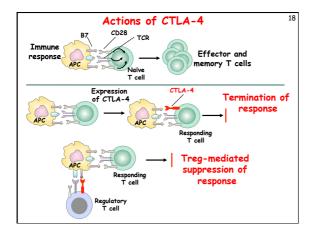


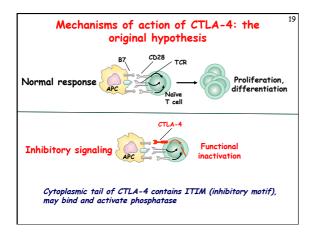


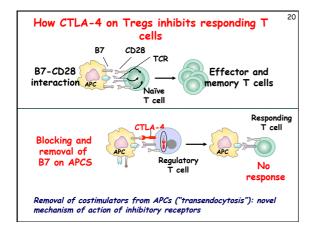


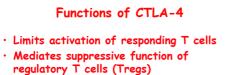

Inhibitory receptors of the immune system

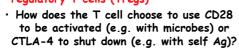
- One mechanism by which the system maintains a balance between activation and inhibition is to use different receptors for different outcomes
- Inhibitory receptors are present in NK cells, T cells and B cells; perhaps other immune cells?
- In many instances, activating receptors work by recruiting kinases and inhibitory receptors activate phosphatases

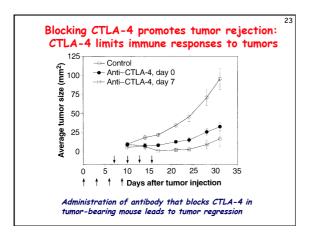




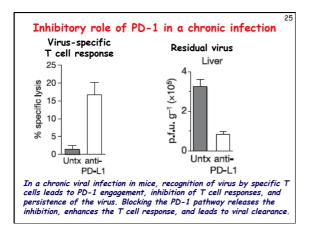




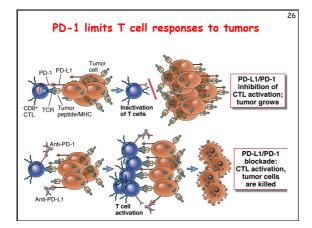




Functions of CTLA-4


22

- Limits activation of responding T cells
- Mediates suppressive function of regulatory T cells (Tregs)
- How does the T cell choose to use CD28 to be activated (e.g. with microbes) or CTLA-4 to shut down (e.g. with self Ag)?
 - Level of B7 expression and affinity of receptors:
 Low B7 (e.g. when DC is displaying self antigen)
 -> engagement of high-affinity CTLA-4; High
 B7 (e.g. after microbe encounter) -->
 engagement of lower affinity CD28
 - Kinetics: CD28 early, CTLA-4 later

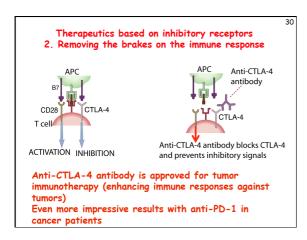


- PD-1 recognizes two widely expressed ligands (PD-L1, PD-L2)
- Knockout of PD-1 leads to autoimmune disease (less severe than CTLA-4-KO)
- Role of PD-1 in T cell suppression in chronic infections, tumors?



Actions of PD-1

- PD-1 attenuates TCR signaling in responding T cells
 - Limits harmful consequences of chronic stimulation with persistent antigen (self, tumors, chronic viral infections)
- \cdot Greater role in CD8 than in CD4 T cells
- Also expressed on follicular helper T cells; function?


		28
Functions of CTLA-4 and PD-1		
	CTLA-4	<u>PD-1</u>
Major site of action	Lymphoid organs	Peripheral tissues
Stage of immune response suppressed	Induction	Effector phase
Main signals inhibited	CD28 costimulation (by reducing B7)	Chronic antigen receptor stimulation
Cell type suppressed	CD4+ > CD8+	CD8+ > CD4+
Inflammatory reactions following antibody treatm		Milder

Inhibitory receptors of T cells

- Prevent reactions against self antigens (their physiologic function)
- Suppress immune responses to some tumors, chronic infections (HCV, HIV)
- Similar roles are established for both CTLA-4 and PD-1

Take home messages

Risks of blocking CTLA-4 or PD-1

31

32

33

• Blocking a mechanism of self-tolerance leads to:

Risks of blocking CTLA-4 or PD-1

- Blocking a mechanism of self-tolerance leads to:
- Autoimmune reactions
 - Prostatitis, vitiligo, other inflammatory disorders, often affecting site of cancer
 - Severity of adverse effects has to be balanced against potential for treating serious cancers
 - Less severe with anti-PD1 antibody

The emerging paradigm for cancer therapy

- Signaling (e.g. Kinase) inhibitor to block oncogenic pathways in tumor cells
- Immune modulator
 - Inhibiting endogenous regulators allows the host to mount an effective immune response (let the immune system do the work itself)
 - May be more effective than vaccination and other approaches for stimulating immunity
 - Anti-PD1 may be more effective than anti-CTLA4 (less toxic, greater effect on CTLs)